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Problem Statement

Key Issue: Mapping soil properties
(e.g., Soil Organic Carbon, SOC) at a
large scale is expensive and logistically

difficult.

Why It Matters: Accurate soil maps are
needed for sustainable agriculture,
carbon sequestration, and climate

change mitigation.
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Figure 1: Healthy soil is inextricably tied to healthy people anF
healthy planet (graphic based on Kopittke et al. 2023) / Credit: Mw
Salzwedel



Research Context & Motivation .

* Problem: Traditional soil mapping methods are inefficient at large scales. l.==

e Goal: Use machine learning to predict soil properties like SOC, while

accounting for spatial autocorrelation to improve accuracy.
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Figure 2: A simplified horizontal workflow diagram illustrating the progression from data sources (remote sensing and field [ ] |
samples) to machine learning methods, culminating in the creation of a digital map. BHEEE
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= Comparison of Baseline Random Forest and Spatial 11

Autocorrelation-Adjusted Random Forest Models. l.==

Figure 3: Methods for incorporating spatial structure into random forestm!i!{

Table 1: Data Feature for Random Forest Construction) X and Y as covariates (XY) Randam Forest Spatial Interpolation (RFSIJ|

Feature Description 5 Tsocl x T+ o . 0] r_sodnz_soc...|a:[a].] |

name 1 1 |14.5 % | W alt 1 1| 20.7 |18.6 |-..|16/12]... =
Yoo - 2 ds E -

clay Clay fraction (top layer) v .2 2 |28.7] % | ¥ , e \g; 5 2| 39 |18.2 |.|19/78... i

gilt Silt fraction (top layer) . |

sand Sand fraction (top layer) X X =

Tock Rock fraction (top layer) Buffer distances (BD) Random Forest Regression Kriging (RFRKH

. . . . . RF model results . I

twi Terrain wetness index 10| soc [bd_1[bd 2f.-- _ i L Model residuals i

tri Terrain roughness index 1|14.5| 1 3 |- . . |

2|2e5] 3 | 1 |... . * i

slnp-a Slﬂp{l = , Krige residuals I

1sf LS-factor . J i

landuse Land use classification Geographically Weighted Random Forest Regression (GWRFR) =

ndvi Mean NDVI, July 2022 i

drained Boolean value for drainage [ |

Soil organic carbon i

s0C [ |

(% of mass) ]
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Spatial Autocorrelation (Completed Paper),.=a:as

Table 2: Model evaluation metrics (5-fold cross—valida-)n.)==

* Findings: Incorporating spatial ==
Model R? RMSE MAE g

autocorrelation improves SOC prediction I
Baseline vector 0.61 7. 4.46 W

accuracy, but the overall improvement is _ ) T
Baseline raster 0.6 7.5 4.39 |m

small. XY 0.61 74 423

i |

* Implication: Validates the importance of RFSI 0.63 7.29 4.31 |m

spatial dependencies in soil prediction BD 0.62 7.37 427 |m
models. RFRK 0.61 .47 4.39 'H

GWRFR 0.6 7.49 4.57) m
S
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Methods & Preliminary Findings o
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6 Figure 4: Comparison of predictions by spatial and non-spatial machine Figure 5: Distribution of SOC predictions across all of Estonia for each ..
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Current Work — Sampling Design " gghuEE

* Focus: Improving sampling design to increase data representativeness s EEE
and model performance. A NEEE
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Figure 6: Dissimilarity Map of Training Samples and All Areas of Estonia. .=.====



Current Work — Sampling Design

* Current Activities: Visiting potential sampling areas across regions to
collect data for SOC estimation.
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rom potential SOC sites for analysis.
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Next Steps

Key Points:

m]

Analyse the collected samples and integrate them into machine
learning models.

Investigate if there is any improvement in accuracy after adding
additional selected samples

Build optimized field sampling method.
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