Framework for Spatial Predictive Modelling of Soil Properties Using Machine Learning

Name: Jeonghwan Choi

Affiliation: Junior Research Fellow in Geoinformatics, Department of Geography,

University of Tartu, Estonia

Contact: jeonghwan.choi@ut.ee

@Lgeoinformatics

FutureScapes

Landscape Geoinformatics Lab

Water Smart Land AGILE PhD School 2024 Date: November 27, 2024 Location: Universitat Jaume I, Castellón de la Plar Spain

European Research Council Established by the European Commission

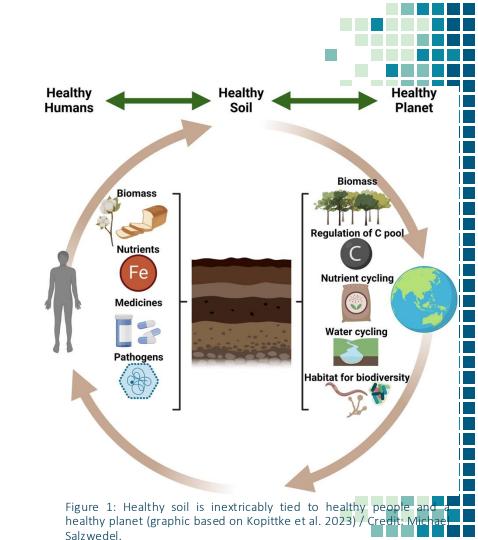
Co-funded by the European Union

Investing in your future

Problem Statement

- Key Issue: Mapping soil properties

 (e.g., Soil Organic Carbon, SOC) at a
 large scale is expensive and logistically
 difficult.
- Why It Matters: Accurate soil maps are needed for sustainable agriculture, carbon sequestration, and climate change mitigation.



Research Context & Motivation

- **Problem:** Traditional soil mapping methods are inefficient at large scales.
- **Goal:** Use machine learning to predict soil properties like SOC, while accounting for spatial autocorrelation to improve accuracy.

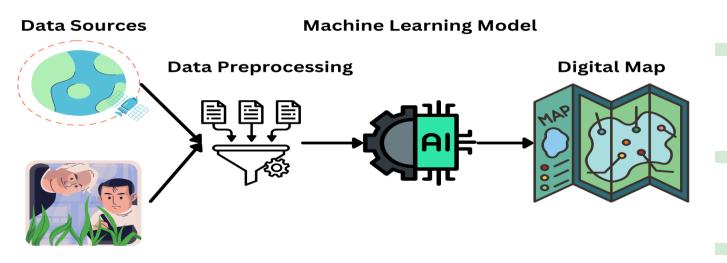
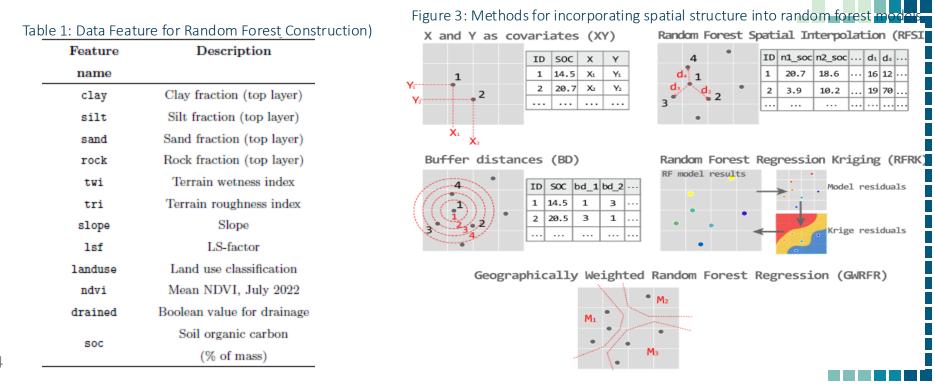


Figure 2: A simplified horizontal workflow diagram illustrating the progression from data sources (remote sensing and field samples) to machine learning methods, culminating in the creation of a digital map.

Methodology Overview

 Comparison of Baseline Random Forest and Spatial Autocorrelation-Adjusted Random Forest Models.



Spatial Autocorrelation (Completed Paper)

- Findings: Incorporating spatial autocorrelation improves SOC prediction accuracy, but the overall improvement is small.
- Implication: Validates the importance of R spatial dependencies in soil prediction B models.

Table 2: Model evaluation metrics (5-fold cross-validation)

Model	$\mathbf{R^2}$	RMSE	MAE
Baseline vector	0.61	7.5	4.46
Baseline raster	0.6	7.5	4.39
XY	0.61	7.4	4.23
RFSI	0.63	7.29	4.31
BD	0.62	7.37	4.27
RFRK	0.61	7.47	4.39
GWRFR	0.6	7.49	4.57

Methods & Preliminary Findings

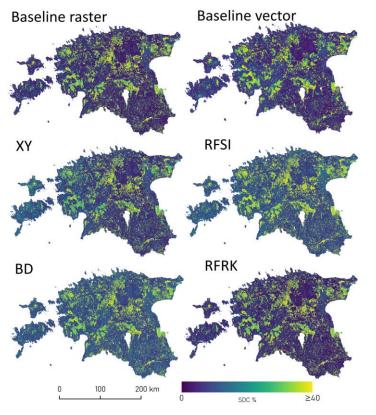


Figure 4: Comparison of predictions by spatial and non-spatial machine learning methods across Estonia.

6

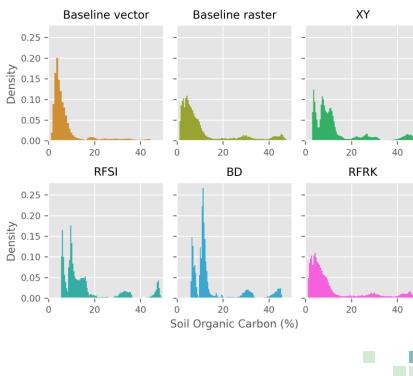


Figure 5: Distribution of SOC predictions across all of Estonia for each model.

Current Work – Sampling Design

 Focus: Improving sampling design to increase data representativeness and model performance.

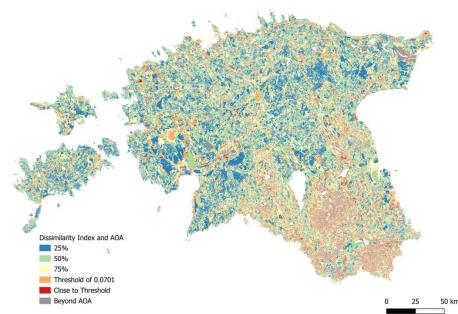


Figure 6: Dissimilarity Map of Training Samples and All Areas of Estonia.

Current Work – Sampling Design

• **Current Activities**: Visiting **potential sampling areas** across regions to collect data for SOC estimation.

Figure 7: Collecting soil samples from potential SOC sites for analysis.

Next Steps

- Key Points:
 - Analyse the collected samples and integrate them into machine learning models.
 - Investigate if there is any improvement in accuracy after adding additional selected samples
 - Build optimized field sampling method.

FutureScapes

Republic of Estonia Ministry of education and research

Thank you!

erc

Co-funded by the European Union

Investing in your future